Skip to main content

Introduction to MATLAB: A Beginner's Guide to Programming

Introduction to MATLAB: A Beginner's Guide to Programming


GitHub:
https://github.com/Sivatech24/MatLab-Works.git

GitHubPage


SinWave:


x = 0:pi/100:2*pi;

y = cos(x);

plot(x, y)

ylabel('Cosine functions') % Corrected single quotes

legend('cos(x)') % Corrected single quotes

title('example M-file') % Corrected single quotes

axis([0 2*pi -3 3])


Plot:

x = 0:0.1:2*pi;

y = sin(x);

plot(x, y, '--rs', 'LineWidth', 2, ...

    'MarkerEdgeColor', 'k', ...

    'MarkerFaceColor', 'b', ...

    'MarkerSize', 5)


Stem:

x = 0:0.1:2*pi;

y = sin(x);

stem(x,y)


SubPlot:

% Example usage of subplot function

x = 0:0.1:2*pi;

y1 = sin(x);

y2 = cos(x);


subplot(2,1,1); % Create a subplot grid of 2 rows and 1 column, and select the first subplot

plot(x, y1);

title('Sine Function');


subplot(2,1,2); % Select the second subplot

plot(x, y2);

title('Cosine Function');


SubPlot1:

x = 0:0.1:2*pi;

y = sin(x);


subplot(2, 1, 1);

plot(x, y);

title('Plot of sin(x)');


subplot(2, 1, 2);

stem(x, y);

title('Stem plot of sin(x)');


Hold:

x = 0:0.1:2*pi;

y = sin(x);

z = cos(x);

t = 0.01*tan(x);


plot(x, y, '--', x, z, '-', x, t, ':')

xlabel('0 to 2\pi') % Used backslash for pi

ylabel('Multiple Plot') % Adjusted the label

legend('sin(x)', 'cos(x)', '0.01*tan(x)') % Adjusted legend labels

title('My Plots')


3D code for logo:


Sample:


L = 40 * membrane(1, 25);

logoFig = figure('Color', [0 0 0]);

logoax = axes('Parent', logoFig);

s = surface(L, 'Parent', logoax);


1


L = 160*membrane(1,100);


2


f = figure;

ax = axes;


s = surface(L);

s.EdgeColor = 'none';

view(3)


3


ax.XLim = [1 201];

ax.YLim = [1 201];

ax.ZLim = [-53.4 160];


4


ax.CameraPosition = [-145.5 -229.7 283.6];

ax.CameraTarget = [77.4 60.2 63.9];

ax.CameraUpVector = [0 0 1];

ax.CameraViewAngle = 36.7;


5


ax.Position = [0 0 1 1];

ax.DataAspectRatio = [1 1 .9];


6


l1 = light;

l1.Position = [160 400 80];

l1.Style = 'local';

l1.Color = [0 0.8 0.8];

 

l2 = light;

l2.Position = [.5 -1 .4];

l2.Color = [0.8 0.8 0];


7


s.FaceColor = [0.9 0.2 0.2];


8


s.FaceLighting = 'gouraud';

s.AmbientStrength = 0.3;

s.DiffuseStrength = 0.6; 

s.BackFaceLighting = 'lit';


s.SpecularStrength = 1;

s.SpecularColorReflectance = 1;

s.SpecularExponent = 7;


9


axis off

f.Color = 'black';




3 dimension:


normalized:


[X, Y] = meshgrid(-10:0.25:10, -10:0.25:10);

f = sinc(sqrt((X/pi).^2 + (Y/pi).^2));

mesh(X, Y, f);

axis([-10 10 -10 10 -0.3 1])

xlabel('{\bf x}') % corrected single quotes

ylabel('{\bf y}') % corrected single quotes

zlabel('{\bf sinc} ({\bf R})') % corrected single quotes

hidden off


Unnormalized:


[X, Y] = meshgrid(-10:0.25:10, -10:0.25:10);

f = sinc(sqrt((X/pi).^2 + (Y/pi).^2));

surf(X, Y, f);

axis([-10 10 -10 10 -0.3 1]);

xlabel('{\bf x}'); % corrected single quotes

ylabel('{\bf y}'); % corrected single quotes

zlabel('{\bf sinc} ({\bf R})'); % corrected single quotes


Autocorrection using Matlab:


N = 1024;

f = 1;

fs = 200;

n = 0:N-1;

x = sin(2*pi*f*n/fs);

t = (0:N-1)/fs; % corrected the calculation of time vector


subplot(2,1,1);

plot(t,x);

title('Sinewave of frequency 1000 Hz'); % corrected the frequency in the title

xlabel('Time [s]');

ylabel('Amplitude');

grid on; % corrected the grid command


Rxx = xcorr(x); % corrected function name to xcorr

subplot(2,1,2);

plot(-N+1:N-1, Rxx); % corrected the x-axis values for the autocorrelation

title('Autocorrelation of Sinewave');

xlabel('Lags');

ylabel('Autocorrelation');

grid on; % corrected the grid command


Batman:


xr = linspace(-7,7,1500);

yr = linspace(4.5,-4.5,1500);


x = repmat( xr , [ numel(yr) 1 ] );

y = repmat( yr' , [ 1 numel(xr) ] );


batman = (((x/7).^2.*sqrt(abs(abs(x)-3)./(abs(x)-3))+((y/3).^2) .*  ...

           sqrt(abs(y+(3*sqrt(33)/7))./(y+(3*sqrt(33)/7))))-1) .* ...

         (abs(x/2)-((3*sqrt(33)-7)/112).*(x.^2)-3+sqrt(1-(abs(abs(x)-2)-1).^2) - y) .* ...

         (9*sqrt(abs((abs(x)-1).*(abs(x)-0.75))./((1-abs(x)) .* (abs(x)-0.75)))-8*abs(x)-y) .* ...

         (3*abs(x)+0.75*sqrt(abs((abs(x)-0.75).*(abs(x)-0.5))./((0.75-abs(x)).*(abs(x)-0.5)))-y) .* ...

         (2.25*sqrt(abs((x-0.5).*(x+0.5))./((0.5-x).*(0.5+x)))-y) .* ...

         (((6*sqrt(10))/7)+(1.5-0.5*abs(x)) .* sqrt(abs(abs(x)-1)./(abs(x)-1))-((6*sqrt(10))/14).*sqrt(4-(abs(x)-1).^2)-y);


imagesc( log(abs(batman)) );


Commands:


SPY

PENNY


Progress bar:


clc;

clear all;

tic;

disp ('Hello, World!'); % Changed the string literal delimiter

h = waitbar(0,'Please wait...'); % Changed the string literal delimiter

n = 0;

for i = 1:100

    waitbar(i/100, h); % Fixed waitbar syntax

    for j = 1:100

        for k = 0:100

            n = factorial(2); % Calculating factorial(2) repeatedly, which doesn't depend on loop variables

        end

    end

end

close(h);

toc


Description:

Are you eager to dive into the world of MATLAB programming but unsure where to start? Look no further! Our comprehensive tutorial is designed specifically for beginners, providing a step-by-step guide to mastering MATLAB. MATLAB, short for MATrix LABoratory, is a powerful software tool widely used in various fields, including engineering, mathematics, physics, and finance. With its intuitive interface and extensive library of functions, MATLAB is ideal for data analysis, visualization, and algorithm development. In this tutorial, we'll walk you through the fundamentals of MATLAB programming, starting with the basics of the MATLAB environment. You'll learn how to navigate the MATLAB interface, create scripts and functions, and execute commands efficiently. Next, we'll explore MATLAB syntax, covering essential programming concepts such as variables, data types, operators, and control flow structures. Whether you're new to programming or transitioning from another language, this tutorial will help you grasp MATLAB's syntax quickly and effectively. As we delve deeper, we'll demonstrate how to manipulate arrays and matrices in MATLAB, leveraging its powerful vectorized operations for efficient computation. You'll discover how to perform common mathematical and statistical calculations, generate plots and visualizations, and customize your MATLAB environment to suit your preferences. Moreover, we'll introduce you to MATLAB's extensive library of built-in functions and toolboxes, empowering you to tackle a wide range of tasks with ease. From signal processing and image analysis to machine learning and optimization, MATLAB offers a wealth of tools for solving complex problems in diverse domains. Throughout the tutorial, we'll provide practical examples and exercises to reinforce your understanding of MATLAB concepts and techniques. Whether you're a student, researcher, or professional, this tutorial will equip you with the skills and knowledge needed to harness the full potential of MATLAB in your work and studies. By the end of this tutorial, you'll have a solid foundation in MATLAB programming and the confidence to tackle real-world projects with confidence. So why wait? Join us on this exciting journey and unlock the endless possibilities of MATLAB today! Don't forget to subscribe to our channel for more tutorials, tips, and tricks to enhance your MATLAB skills. Happy coding! Tags:

#MATLAB, #programming, #beginner, #tutorial, #basics, #introduction, #learn, #coding, #dataanalysis, #scientificcomputing, #engineering, #mathematics, #visualization, #syntax, #controlflow, #functions, #arrays, #matrices, #operations, #mathematicalcalculations, #statisticalanalysis, #plotting, #visualization, #toolboxes, #signalprocessing, #imageanalysis, #machinelearning, #optimization, #practicalexamples, #exercises, #skills, #knowledge, #projects, #confidence, #educational, #technology, #software, #development, #programminglanguage, #beginnerprogramming, #codingforbeginners, #mathforbeginners, #learnprogramming, #computerscience, #digitallearning, #onlineeducation, #STEM, #computationalscience, #algorithmdevelopment, #datavisualization, #coding101, #MATLABguide, #programmingtutorial, #programminglanguage, #codingtutorial, #codinglessons, #codingtips, #programmingtips, #engineeringeducation, #mathematicaltutorials, #scienceeducation, #datasciencetutorial, #programmingcourse, #onlinelearning, #educationalvideo, #tutorialvideo, #programmingfundamentals, #learnMATLAB, #codingbootcamp, #engineeringstudents, #mathematicseducation, #technicalskills, #scientificprogramming, #algorithmdesign, #mathematicsforprogramming, #computerprogramming, #computersciencetutorial, #MATLABcoding, #beginnerMATLABtutorial, #codingeducation, #softwaredevelopmenttutorial, #technicaltraining, #programmingconcepts, #codingjourney, #MATLABlessons, #MATLABforstudents, #codingcommunity, #learnfromhome, #codingbasics, #STEMeducation, #technicalcoding, #programmingskills, #codingknowledge, #codingprojects, #practicalcoding, #engineeringcoding, #sciencecoding, #programmingprojects, #codingconfidence, #learnandcode, #digitallearning, #programminglanguages, #codingchallenges, #softwareengineering, #computerscienceeducation, #codingtechniques, #algorithmicthinking, #codingforSTEM, #dataanalysiswithMATLAB, #codingexplained, #codingexplained, #codingexplained, #codingexplained.

Comments

Popular posts from this blog

Stable Diffusion WebUI 1.10.1 Full Installation Guide | AUTOMATIC1111 | Windows 11

Stable Diffusion WebUI 1.10.1 Full Installation Guide | AUTOMATIC1111 | Windows 11  Welcome to this step-by-step Stable Diffusion WebUI 1.10.1 installation guide! In this tutorial, we will walk you through the complete setup process on Windows 11 , including downloading and installing Git , setting up Python 3.10.6 , cloning the AUTOMATIC1111 repository , and configuring .gitignore for a clean and efficient installation. By following this guide, you’ll be able to generate AI-generated images using Stable Diffusion with ease. Whether you're new to AI image generation or an experienced user, this guide ensures that your setup is optimized for performance and stability. πŸ”— Required Downloads: Before we begin, make sure to download the following tools: ✅ Git for Windows – Download Here ✅ Stable Diffusion WebUI (AUTOMATIC1111) – Download Here ✅ Python 3.10.6 – Download Here πŸ› ️ Step-by-Step Installation Process 1️⃣ Install Git for Windows Git is required to clone the ...

Unreal Engine Product Showcase: Mesmerizing Video Sequence Render

  4k Image:

Install TensorFlow on Windows 11: Step-by-Step Guide for CPU & GPU

 --- Installing **TensorFlow on Windows 11** requires setting up system dependencies, configuring Python, and ensuring compatibility with CPU or GPU acceleration. This step-by-step guide provides everything needed to install **TensorFlow 2.10 or lower** on **Windows Native**, including software prerequisites, Microsoft Visual C++ Redistributable installation, Miniconda setup, GPU driver configuration, and verification steps.   ### **System Requirements:**   Before installing TensorFlow, ensure your system meets these requirements:   - **Operating System:** Windows 7 or higher (64-bit)   - **Python Version:** 3.9–3.12   - **pip Version:** 19.0 or higher for Linux and Windows, 20.3 or higher for macOS   - **Microsoft Visual C++ Redistributable:** Required for Windows Native   - **Long Paths Enabled:** Ensure long paths are enabled in Windows settings   For **GPU support**, install:   - **NVIDIA ...