---
Installing **TensorFlow on Windows 11** requires setting up system dependencies, configuring Python, and ensuring compatibility with CPU or GPU acceleration. This step-by-step guide provides everything needed to install **TensorFlow 2.10 or lower** on **Windows Native**, including software prerequisites, Microsoft Visual C++ Redistributable installation, Miniconda setup, GPU driver configuration, and verification steps.
### **System Requirements:**
Before installing TensorFlow, ensure your system meets these requirements:
- **Operating System:** Windows 7 or higher (64-bit)
- **Python Version:** 3.9–3.12
- **pip Version:** 19.0 or higher for Linux and Windows, 20.3 or higher for macOS
- **Microsoft Visual C++ Redistributable:** Required for Windows Native
- **Long Paths Enabled:** Ensure long paths are enabled in Windows settings
For **GPU support**, install:
- **NVIDIA GPU drivers**: ≥ 525.60.13 (Linux) / ≥ 528.33 (WSL on Windows)
- **CUDA Toolkit**: Version 12.3
- **cuDNN SDK**: Version 8.9.7
- **(Optional) TensorRT**: To enhance model inference performance
### **Step 1: Install Microsoft Visual C++ Redistributable**
TensorFlow requires **Microsoft Visual C++ Redistributable** for Visual Studio 2015, 2017, and 2019.
- Visit the official **Microsoft Visual C++ Redistributable** download page.
- Scroll to **Visual Studio 2015, 2017, and 2019** section.
- Download and install the correct version for your system (x64).
### **Step 2: Install Miniconda**
Miniconda is the recommended package manager for TensorFlow installation.
- Download **Miniconda for Windows (64-bit)**.
- Double-click the installer and follow the installation steps.
### **Step 3: Create a Conda Environment**
To prevent dependency conflicts, create a **dedicated environment** for TensorFlow:
```sh
conda create --name tf python=3.9
conda activate tf
```
Ensure the new environment is **activated** before proceeding.
### **Step 4: Install GPU Dependencies (Optional)**
For TensorFlow GPU acceleration, install:
1. **NVIDIA GPU drivers**
2. **CUDA and cuDNN** via Conda:
```sh
conda install -c conda-forge cudatoolkit=11.2 cudnn=8.1.0
```
3. Verify GPU installation using:
```sh
python -c "import tensorflow as tf; print(tf.config.list_physical_devices('GPU'))"
```
### **Step 5: Install TensorFlow**
First, upgrade `pip` to the latest version:
```sh
pip install --upgrade pip
```
Then install TensorFlow:
```sh
pip install "tensorflow<2.11"
```
⚠ **Important:** Versions **above 2.10 do not support Windows GPU natively**.
### **Step 6: Verify TensorFlow Installation**
#### **For CPU Verification:**
Run the following command:
```sh
python -c "import tensorflow as tf; print(tf.reduce_sum(tf.random.normal([1000, 1000])))"
```
If a tensor value appears, TensorFlow is correctly installed.
#### **For GPU Verification:**
Run the command:
```sh
python -c "import tensorflow as tf; print(tf.config.list_physical_devices('GPU'))"
```
If a list of **GPU devices** appears, TensorFlow is using your **NVIDIA GPU** successfully.
### **Conclusion**
This guide provides a **detailed walkthrough** for installing TensorFlow on **Windows 11**, covering **CPU and GPU configurations**, necessary dependencies, and post-installation verification. By following these steps, you can ensure a **stable and optimized TensorFlow environment** for deep learning projects.
### Links:
https://github.com/Sivatech24/Ultimate-Software-Installation-Setup-Guide-Tutorials-Demos/blob/main/Install%20TensorFlow%20on%20Windows%2011%3A%20Step-by-Step%20Guide%20for%20CPU%20%26%20GPU.md
https://www.tensorflow.org/install/pip
https://www.tensorflow.org/install/pip#windows-native_1
https://pypi.org/project/tensorflow-gpu/
https://www.nvidia.com/en-sg/data-center/gpu-accelerated-applications/tensorflow/
Comments
Post a Comment