Skip to main content

Backtracking Mastery: C, C++, Java, Python Programming | Step-by-Step Examples

 Dive into the world of backtracking with our comprehensive programming tutorial! This video guides you through mastering backtracking in C, C++, Java, and Python. Whether you're a novice or an experienced coder, follow along with step-by-step examples in each language to enhance your problem-solving skills. Unlock the secrets of backtracking and elevate your programming prowess!


c:

#include<stdio.h>


void printarray(int arr[], int n)

{

    for(int i=0;i<n;i++)

    {

        printf("%d",arr[i]);

    }

    printf("\n");

}


void swap(int *a, int *b)

{

    int temp= *a;

    *a=*b;

    *b=temp;

}


void backtrack(int elements[], int start, int n)

{

    if(start == n-1)

    {

        printarray(elements, n);

        return;

    }

    for(int i=start;i<n;i++)

    {

        swap(&elements[start],&elements[i]);


        backtrack(elements, start+1, n);

    }

}

int main()

{

    int elements[]={1,2,3};

    int size=sizeof(elements)/sizeof(elements[0]);

    backtrack(elements, 0, size);

    return 0;

}

c++:

#include<iostream>

#include<vector>


using namespace std;


void backtrack(std::vector<int>& elements, std::vector<int>& current, std::vector<bool>& used) 

{

if (elements.empty()) 

{

for (int num:current) 

{

std::cout << num << "";

}

std::cout << "\n";

return;

}

for (int i = 0; i < elements.size(); i++) 

{

if (!used[i]) 

{

int chosen = elements[i];

current.push_back(chosen);

used[i] = true;

cout << "Calling backtrack with chosen = " << chosen << endl;


backtrack(elements, current, used);


used[i] = false;

current.pop_back();

}

}

}

int main()

{

std::vector<int> elements = {1,2,3};

std::vector<int> current;

std::vector<bool> used(elements.size(), false);

backtrack(elements, current, used);

return 0;

}

Java:

import java.util.Arrays;


public class backtracking {

    public static void backtarcking(int[] elements,int start){

        if(start == elements.length-1){

            System.out.println(Arrays.toString(elements));

            return;

        }

        for(int i = start; i < elements.length; i++){

            int temp = elements[start];

            elements[start] = elements [i];

            elements [i] = temp;

            backtarcking(elements, start + 1);

            temp = elements[start];

            elements [start] = elements[i];

            elements[i] = temp;

        }

    }

    public static void main(String[] args) {

        int[] elements={1,2,3};

        backtarcking(elements,0);

    }

}

Python:

def backtrack(elements, current=[]):

    if not elements:

        print(current)

        return

    for i in range(len(elements)):

        chosen=elements[i]

        current.append(chosen)


        next_elements=elements[:i]+elements[i+1:]

        backtrack(next_elements,current)

        current.pop


elements =[1,2,3]

backtrack(elements)


GitHub Link:

https://github.com/Sivatech24/Backtracking.git





Thank you for visiting our blog...


Comments

Popular posts from this blog

Stable Diffusion WebUI 1.10.1 Full Installation Guide | AUTOMATIC1111 | Windows 11

Stable Diffusion WebUI 1.10.1 Full Installation Guide | AUTOMATIC1111 | Windows 11  Welcome to this step-by-step Stable Diffusion WebUI 1.10.1 installation guide! In this tutorial, we will walk you through the complete setup process on Windows 11 , including downloading and installing Git , setting up Python 3.10.6 , cloning the AUTOMATIC1111 repository , and configuring .gitignore for a clean and efficient installation. By following this guide, you’ll be able to generate AI-generated images using Stable Diffusion with ease. Whether you're new to AI image generation or an experienced user, this guide ensures that your setup is optimized for performance and stability. 🔗 Required Downloads: Before we begin, make sure to download the following tools: ✅ Git for Windows – Download Here ✅ Stable Diffusion WebUI (AUTOMATIC1111) – Download Here ✅ Python 3.10.6 – Download Here 🛠️ Step-by-Step Installation Process 1️⃣ Install Git for Windows Git is required to clone the ...

Unreal Engine Product Showcase: Mesmerizing Video Sequence Render

  4k Image:

Install TensorFlow on Windows 11: Step-by-Step Guide for CPU & GPU

 --- Installing **TensorFlow on Windows 11** requires setting up system dependencies, configuring Python, and ensuring compatibility with CPU or GPU acceleration. This step-by-step guide provides everything needed to install **TensorFlow 2.10 or lower** on **Windows Native**, including software prerequisites, Microsoft Visual C++ Redistributable installation, Miniconda setup, GPU driver configuration, and verification steps.   ### **System Requirements:**   Before installing TensorFlow, ensure your system meets these requirements:   - **Operating System:** Windows 7 or higher (64-bit)   - **Python Version:** 3.9–3.12   - **pip Version:** 19.0 or higher for Linux and Windows, 20.3 or higher for macOS   - **Microsoft Visual C++ Redistributable:** Required for Windows Native   - **Long Paths Enabled:** Ensure long paths are enabled in Windows settings   For **GPU support**, install:   - **NVIDIA ...